Updates in Limb-Girdle Muscular Dystrophy (LGMD)

Background

- LGMD is a term for a heterogenous group of diseases characterized by pelvic and shoulder girdle muscle weakness. 1,2
- This document captures highlights from an MDA webinar with LGMD experts.
- View the CE-accredited companion webinar <u>here</u>.

Overview

Description

- Classified based on new nomenclature as of 2018³
 - LGMD dominant (LGMDD)
 - LGMD recessive (LGMDR)
- Shows genetic heterogeneity⁴
 - Mutations in different genes cause similar phenotype (both SGCG and SGCA pathogenic variants are similar phenotypically)
- Shows genetic pleiotropy^{4,5}
 - Different mutations in same gene cause different phenotypes (DYSF pathogenic variants can cause limb-girdle and distal myopathy phenotypes)

Epidemiology

- LGMD worldwide prevalence is 0.8-6.9 cases per 100,0003,5
- ~2800-24,150 affected patients in the United
- · Affects both sexes equally3

Onset and Prognosis

- · Age of onset varies by subtype (from childhood to young adult or later)3
- Severe forms of LGMD cause ambulatory loss3
- · Other subtypes lead to limited mobility3
- Impacts patients' quality of life and caregivers' burden3

SGCA, q-sarcoglycan; SGCG, v-sarcoglycan

1. Liu W, et al. Genet Med. 2019;21(11):2512-2520. 2. Bouchard C, Tremblay JP. J Clin Med. 2023;12(14):4769. 3. Georganopoulou DG, et al. Protein J. 2021;40(4):466-488. 4. Angelini C. Acta Myol. 2020;39(4):207-217. 5. Johnson NE, Statland JM. Continuum (Minneap Minn). 2022;28(6):1698-1714.

LGMD: Clinical Manifestations

Muscle weakness

Affects limb-girdle muscles first (shoulders and hips)

- · Difficulties in raising arms/objects above head
- · Difficulties in climbing/descending stairs, running, carrying groceries, getting off floor (Gower's maneuver)
- · Difficulty with sports in youth

Progresses slowly; face is spared until very late

- Proximal muscle weakness
- · Posterior compartment of thigh and leg > anterior

Additional symptoms in certain subtypes of LGMDs:

- Difficulties in standing on toes (dysferlin, anoctamin 5)²
- Scapular winging (eg, sarcoglycanopathies)
- · Calf hypertrophy

Cognition¹

Usually not affected

Respiratory weakness 1.3

- · More common in recessive forms of LGMD and after wheelchair dependency
- · Weak cough, difficulty taking deep breaths, orthopnea
- · Diaphragm weakness is more common in sarcoglycanopathies (R3-R6)

Cardiomyopathies¹

Occurs only in some subtypes of LGMDs

- Sarcoglycanopathies (R3-R6)
- FKRP (R9)
- Telethonin (R7)

Pain³

- Imbalance due to joint weakness
- · Low back pain occurs commonly, mostly due to extensor weakness
- Pain occurs secondary to immobility

FKRP, fukutin-related protein: LGMD, limb-girdle muscular dystrophy.

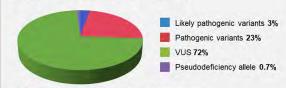
1. Georganopoulou DG, et al. Protein J. 2021;40(4):466-488. 2. Soontrapa P, et al. Genes (Basel). 2022;13(10):1736. 3. Narayanaswami P, et al. Neurology. 2014;83(16):1453-1463

Developed with the expertise of Chamindra G. Laverty, MD, Clinical Professor of Neurosciences, UC San Diego Health, San Diego, CA.

Updates in Limb-Girdle Muscular Dystrophy (LGMD)

LGMD: Diagnosis

Laboratory and clinical examinations


- Measure CK levels^{1,2}
 - Elevated in all LGMDs
 - Higher values may be indicative of recessive disease
- Muscle biopsy^{1,3,4,5}
 - Immunofluorescence staining
 - Some LGMDs have distinguishing features
- Electromyography⁵
 - Most useful in excluding nerve diseases with proximal muscle weakness

Genetic testing to confirm LGMD subtype^{4,6}

- Panel tests have improved accuracy of diagnosis^{5,6}
- Panels may be free or sponsored⁶
- They include ~230 genes²
- Are easily collected⁵

72% of patients diagnosed with clinical LGMDs have ${\sf VUS}^7$

(large LGMD US cohort of 4656 patients)

From Nallamilli BRR, et al. Ann Clin Transl Neurol. 2018;5(12):1574-1587.

CK, creatine kinase; LGMD, limb-girdle muscular dystrophy; VUS, variants of uncertain significance.

1. Bushby K. Pract Neurol. 2009;9(6):314-323. 2. Ng KWP, et al. Front Neurol. 2022;13:997551. 3. Moore SA, et al. J Neuropathol Exp Neurol. 2006;65(10):995-1003. 4. Narayanaswami P, et al. Neurology. 2014;83(16):1453-1463. 5. Georganopoulou DG, et al. Protein J. 2021;40(4):466-488. 6. Johnson NE, et al. Continuum (Minneap Minn). 2022;28(6):1698-1714. 7. Nallamilli BRR, et al. Ann Clin Transl Neurol. 2018;5(12):1574-1587.

Genetic Testing and VUS

- Identify VUS and verify the number of VUS matches the inheritance pattern (dominant or recessive)
 - If it does not match, consider alternate diagnoses. Variant may not be able to be assessed as pathogenic
- 2. Verify the report demonstrates low population frequency and predicted pathogenic outcome
 - If this is not demonstrated, consider alternate diagnoses. Variant may not be able to be assessed as pathogenic
- Test family for variant
 - If VUS does not match family pattern of disease, consider alternate diagnoses. Variant may not be able to be assessed as pathogenic
 - · If VUS matches family pattern of disease, variant may be pathogenic
- 4. Confirm protein loss in muscle biopsy
 - If there is no protein loss in the biopsy, consider alternate diagnoses. Variant may not be able to be assessed as pathogenic, and it may be a potential candidate for research studies
 - · If protein loss is observed, variant may be pathogenic

- If dominant→1 variant
- If recessive → 2 variants

Or if in silico algorithms predict an indeterminate effect

In case of a pathogenic variant:

- If recessive → must be in trans
- If dominant → de novo or affected parent (reduced penetrance)?

VUS, variants of uncertain significance.

Johnson NE, et al. Continuum (Minneap Minn), 2022;28(6):1698-1714.

Updates in Limb-Girdle Muscular Dystrophy (LGMD)

LGMD: New Classification

New nomenclature (2018) and characteristics 1,2

Dominant - LGMDD

- · ~10% of all LGMD
- · 5 subtypes
- Age of onset: adolescence to late adulthood
- · Mild limb weakness
- Normal to mildly elevated CK levels (~1000 U/L)
- Slow progression

Recessive - LGMDR

- · ~90% of all LGMD
- · 24 subtypes
- Age of onset: childhood to young adulthood
- Moderate to severe limb weakness
- Mild to highly elevated CK levels (between 1000 and 30,000 U/L)
- Fast progression (often requires mobility aides)

Primary distinction from the previous nomenclature¹⁻³

- Presence of limb-girdle pattern of weakness is required
- Becker, desminopathies, and LMNA gene variants have been excluded from the LGMDs category
- · Pathology must be dystrophic
 - Myofibrillar myopathy and metabolic diseases have been removed
- · Gene is added to the name

CK, creatine kinase; LGMD, limb-girdle muscular dystrophy.

1. Georganopoulou DG, et al. Protein J. 2021;40(4):466-488. 2. Johnson NE, Statland JM. Continuum (Minneap Minn). 2022;28(6):1698-1714. 3. Angelini C. Acta Myol. 2020;39(4):207-217.

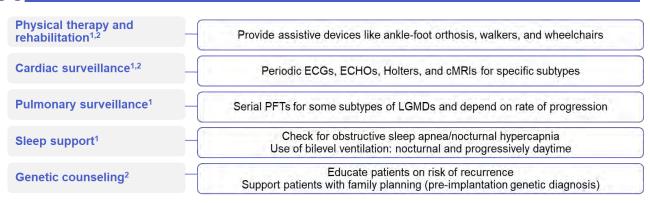
New Classification Examples

Gene	New Name	Old Name
CAPN3	LGMDR1 calpain3-related	LGMD2A
DYSF	LGMDR2 dysferlin-related	LGMD2B
SGCA	LGMDR3 α-sarcoglycan-related	LGMD2D
SGCB	LGMDR4 β-sarcoglycan-related	LGMD2E
SGCG	LGMDR5 γ-sarcoglycan-related	LGMD2C
SGCD	LGMDR6 δ-sarcoglycan-related	LGMD2F
TCAP	LGMDR7 telethonin-related	LGMD2G
TRIM32	LGMDR8 TRIM32-related	LGMD2H
FKRP	LGMDR9 FKRP-related	LGMD2I
TTN	LGMDR10 titin-related	LGMD2J
POMT1	LGMDR11 POMT1-related	LGMD2K
ANO5	LGMDR12 anoctamin5-related	LGMD2L
FKTN	LGMDR13 fukutin-related	LGMD2M
POMT2	LGMDR14 POMT2-related	LGMD2N
POMGnT1	LGMDR15 POMGnT1-related	LGMD2O

Gene	New Name	Old Name
DAG1	LGMDR16 α-dystroglycan-related	LGMD2P
PLEC	LGMDR17 plectin-related	LGMD2Q
TRAPPC11	LGMDR18 TRAPPC11-related	LGMD2S
<i>GMPPB</i>	LGMDR19 GMPPB-related	LGMD2T
ISPD	LGMDR20 ISPD-related	LGMD2U
POGLUT1	LGMDR21 POGLUT1-related	LGMD2Z
COL6A1, 2, 3	LGMDR22 collagen 6-related	Bethlem myopathy
LAMA2	LGMDR23 laminin α 2-related	Merosin
POMGNT2	LGMDR24 POMGNT2-related	POMGNT2-related muscular dystrophy
Gene	New Name	Old Name
DNAJB6	LGMDD1 DNAJB6-related	LGMDD1D
TNP03	LGMDD2 TNP03-related	LGMD1F
HNRNPDL	LGMDD3 HNRNPDL-related	LGMD1G
CAPN3	LGMDD4 calpain3-related	LGMD1I
COL6A1, 2, 3	LGMDD5 collagen 6-related	Bethlem myopathy

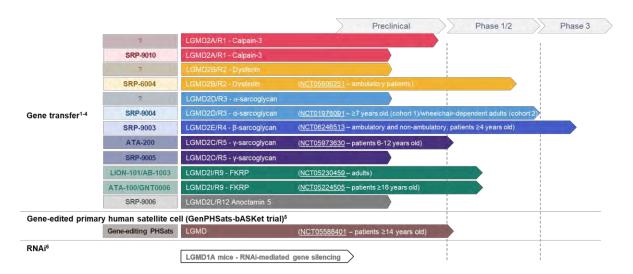
LGMD, limb-girdle muscular dystrophy. Straub V, et al. Neuromuscul Disord. 2018;28(8):702-710.

Updates in Limb-Girdle Muscular Dystrophy (LGMD)



MDT and Management of Patients With LGMDs

There is no disease-modifying therapy available currently for any LGMD



An MDT approach is recommended for management of LGMDs^{1,2}

cMRI, cardiac magnetic resonance imaging; ECG, echocardiogram; ECHO, echocardiogram; LGMD, limb-girdle muscular dystrophy; MDT, multidisciplinary team; PFT, pulmonary function test. 1. Narayanaswami P, et al. Neurology. 2014;83(16):1453-1463. 2. Georganopoulou DG, et al. Protein J. 2021;40(4):466-488

LGMD Gene Therapies in Pipeline

LGMD, limb-girdle muscular dystrophy; PHSats, primary human satellite cells; RNAi, RNA interference.

1. Limb-girdle muscular dystrophy type 2I/R9. AskBio website. https://www.askbio.com/limb-girdle-muscular-dystrophy-type-2i-r9-clinical-trial/. 2. Our pipeline. Atamyo Therapeutics website. https://atamyo.com/science-technology/pipeline/. 3. Building an industry-leading genetic medicine pipeline. Sarepta Therapeutics, Inc. website. https://www.asrepta.com/products-pipeline/pipeline. 4. Limb-girdle muscular dystrophy | gene therapy. ClinicalTrials.gov/search?cond=Limb/s2OD/strophyPi&intr=gene%20therapy&page=1. 5. Three therapeutic platforms target different muscle diseases. MyoPax website. https://myopax.com/pipeline/. 6. Liu J, et al. Mol Ther Nucleic Acids. 2014;3(4):e160.

Updates in Limb-Girdle Muscular Dystrophy (LGMD)

LGMD: Key Resources

LGMD, limb-girdle muscular dystrophy.

Resources to Help With VUS Analysis

Useful Information

- Wait for second family to be discovered
- Partner with clinician scientists for further testing
 - Advanced/specific computer modeling
 - RNA sequencing on muscle

VUS, variants of uncertain significance.

Access companion CE-accredited MDA webinar here

